II B.Tech I Semester(R09) Supplementary Examinations, May 2011 PROBABILITY THEORY \& STOCHASTIC PROCESSES
 (Electrical \& Electronics Engineering)
 (For students of R07 regulation readmitted to II B.Tech I Semester R09)

Answer any FIVE questions
 All questions carry equal marks

1. (a) What do you mean by Bernoulli trials? Explain.
(b) An urn A contains 5 white and 3 black balls. Another urn B contains 3 white and 5 black balls. Two balls are taken from urn A randomly and are placed in uru B. Now, a ball is taken from urn B. What is the probability that it is a black ball?
2. (a) What are the different types of random variables? Explain each type with examples.
(b) A random current is described by the sample space $s=\{-4 \leq i \leq 12\}$. A random variable x is defined by

$$
x(i)= \begin{cases}-2 & i \leq-2 \\ i & -2<i \leq 1 \\ 1 & i<i \leq 4 \\ 6 & 4<i\end{cases}
$$

i. Show, by a sketch, the value x in to which the value of i are mapped by x .
ii. What type of random variable is X ?
3. (a) Explain the significance of Monotonic transformations of a continuous random variable.
(b) A random variable x has a characteristic function given by $\varphi_{x}(\omega)=\left\{\begin{array}{ll}1-|\omega| & |\omega| \leq 1 \\ 0 & |\omega|>1\end{array}\right.$. find its density function.
4. (a) State and explain the properties of joint density function.
(b) Show that the function $G_{x, y}(x, y)=\left\{\begin{array}{lll}0 & x \\ 1 & x \geq y \\ \geq\end{array}\right.$
Cannot be a valid distribution function.
5. (a) If x and y are two random variable, discuss when there are jointly Gaussian.
(b) Define random variables V and W by $\mathrm{V}=\mathrm{X}+$ ay; $\mathrm{W}=\mathrm{X}$-ay Where is a real number and x and y are random variables. Determine a in terms of moments of x and y such that V and W are orthogonal.
6. (a) What are the differences between deterministic and non deterministic random processes? Explain with an example.
(b) Define a random process by $x(t)=A \cos (\pi t)$

Where A is a gaussian random variable with zero mean and variance σ_{A}^{2}.
i. Find the density functions of $x(0)$ and $x(1)$
ii. Is $\mathrm{x}(\mathrm{t})$ stationary is any sense?
7. (a) Discuss Gaussian random process and explain its properties.
(b) Air craft arrive at an airport according to a poisson process at a rate of 12 per hour. All aircrafts are handled by one air traffic controller. If the controller takes a^{2} minutes coffee break, what is the probability that the will miss one or more arriving aircrafts.
8. (a) State and prove Wiener-Kinchine relation.
(b) Let A_{0} and B_{0} be the random variables. A random process is defined as $x(t)=A_{0} \cos \omega o t+B_{0} \sin \omega o t$, Where ω_{0} is a real constant? Find the power density spectrum of $\mathrm{x}(\mathrm{t})$, if A_{0} and B_{0} are un correlated random variables with zero mean and same variance.

